FANDOM


This page contains resources about International Mathematical Olympiad and other Mathematics competitions.

Subfields and ConceptsEdit

BooksEdit

See also Recommended Books, Math Books and Olympiad Books.

  • Andreescu, T., Mortici, C., & Tetiva, M. (2017). Mathematical Bridges. Birkhäuser.
  • Xiong, B., & Lee, P. Y. (2017). Mathematical Olympiad in China (2011-2014): Problems and Solutions (Volume 15). World Scientific. 
  • Zhou, X. (2017). Art of Thinking: Math for Gifted Students. CreateSpace. 
  • Zhou, X. (2016). Power Calculation by Examples: Math for Gifted Students. CreateSpace.
  • Beekman, R. M. (2016). The Art of Mathematical Problem Solving. lulu.com.
  • Zhou, X. (2015). Indeterminate Equation: Math for Gifted Students. CreateSpace.
  • Becheanu, M., & Enescu, B. (2014). Balkan Mathematical Olympiads: The First 30 Years (1984-2013). Amer Mathematical Society.
  • Andreescu, T., & Enescu, B. (2012). Mathematical Olympiad Treasures. 2nd Ed. Birkhäuser.
  • Xiong, B., & Lee, P. Y. (2012). Mathematical Olympiad in China (2009-2010): Problems and Solutions (Volume 9). World Scientific.
  • Jiagu, X. (2012). Lecture Notes on Mathematical Olympiad Courses: For Senior Section (Volume 8). World Scientific.
  • Djukić, D., Janković, V., Matić, I., & Petrović, N. (2011). The IMO Compendium: A Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2009. 2nd Ed. Springer.
  • Holton, D. (2011). A Second Step to Mathematical Olympiad Problems (Volume 7). World Scientific.
  • Chau, H. (2010). Selected Problems Of The Vietnamese Mathematical Olympiad (1962-2009) (Volume 5). World Scientific.
  • Jiagu, X. (2009). Lecture Notes on Mathematical Olympiad Courses: For Junior Section (Volume 6). World Scientific.
  • Holton, D. (2009). A First Step to Mathematical Olympiad Problems (Volume 1). World Scientific.
  • Batterson, J. (2009). Competition Math for Middle School. CreateSpace.
  • Hitchcock, G., & Zawaira, A. (2009). A primer for mathematics competitions. Oxford University Press.
  • Andreescu, T., & Gelca, R. (2009). Mathematical Olympiad Challenges. Birkhäuser.
  • Pólya, G., & Kilpatrick, J. (2009). The Stanford mathematics problem book: With hints and solutions. Dover Publications.
  • Rusczyk, R. (2009). Precalculus. AoPS Incorporated.
  • Xiong, B., & Lee, P. Y. (2009). Mathematical Olympiad in China (2007-2008): Problems and Solutions. World Scientific.
  • Xiong, B., & Lee, P. Y. (2007). Mathematical Olympiad in China: Problems and Solutions. World Scientific.
  • Faires, J. D. (2006). First steps for math olympians: using the American mathematics competitions. Mathematical Association of America.
  • Lehoczky, S., & Rusczyk, R. (2006). The Art of Problem Solving, Volume 1: the Basics. 7th Ed. AoPS Incorporated.
  • Lehoczky, S., & Rusczyk, R. (2006). The Art of Problem Solving, Volume 2: And Beyond. 7th Ed. AoPS Incorporated.
  • Zeitz, P. (2006). The Art and Craft of Problem Solving. 2nd Ed. Wiley.
  • Brânzei, D., Şerdean, I., & Şerdean, V. (2003). Junior Balkan Mathematical Olympiads. Plus.
  • Andreescu, T., & Andrica, D. (2003). 360 Problems for Mathematical Contests. GIL.
  • Βλάμος, Π. (2002). Βαλκανικές Μαθηματικές Ολυμπιάδες 1984 - 2001. Ελληνική Μαθηματική Εταιρεία. [in Greek] (link)
  • Pranesachar, C. R. (2000). Problem Primer for the Olympiad. Prism
  • Engel, A. (1999). Problem-Solving Strategies. Springer.
  • Yaglom, A. M., & Yaglom, I. M. (1987). Challenging Mathematical Problems With Elementary Solutions, Volume 1: Combinatorial Analysis and Probability Theory. Dover Publications.
  • Yaglom, A. M., & Yaglom, I. M. (1987). Challenging Mathematical Problems With Elementary Solutions, Volume 2: Problems from Various Branches of Mathematics. Dover Publications.
  • Larson, L. C. (1983). Problem-Solving Through Problems. Springer.

See alsoEdit

Other ResourcesEdit